

 © 2000 Havok.com Inc. 1

Control Freaks

Mixing game play, physics and 3D
graphics in Lingo

This tutorial outlines how to combine some simple game play, the
Havok Xtra plugin and the Shockwave 3D plugin, to produce a car-
driving demo. Each step from scene construction onward is covered
in detail. Once it’s all over you should have a running version of a
simple car demo that you can use as a base to build a more
interesting car game.

Contents

1 OVERVIEW:... 2

2 SCENE CONSTRUCTION ... 3

3 ADDING HAVOK DYNAMICS IN DIRECTOR .. 5

4 SMOKE AND MIRRORS ... 7

5 THE DRIVE MODEL BEHAVIOUR.. 9

6 THINGS TO TRY..13

 © 2000 Havok.com Inc. 2

1 Overview:
This tutorial produces a simple car driving behavior. It is reasonably
realistic, but most of all it is fun to drive. The emphasis is on making the
demo fun rather than making it physically accurate.

Here’s a checklist of the tools you’ll need:

1. 3ds max: For 3D scene construction

2. Shockwave 3D Exporter: To export the 3D scene

3. MAX Havok plugin: To export the physical scene

4. Director: To put it all together

5. Havok Xtra: To control the dynamics in Director

6. Havok Behaviors: To link the physics and the visuals

7. Tutorial Files: These include the driving behavior and the models

Make sure you have each of these tools installed. The MAX Havok plugin and
the Havok Xtra are available from the Havok Website
http://www.havok.com.

The most important (and difficult) task when working with physics is to mix
the game play and realism in just the right amounts. It’s often the case that
physically realistic behavior is not exactly what you want. Instead it’s often
hyper real behavior, like power-slides and cornering at 150mph that adds all
the fun. The bottom line is that the more control both the game designer and
the users have the better.

A Lingo behavior controls the car driving in this example. It’s designed
specifically with game play in mind. It’s relatively straightforward and simple
to tweak. It comes with a range of parameters that let you adjust anything
from top speed to type grip. The tutorial covers it in detail later.

 © 2000 Havok.com Inc. 3

2 Scene Construction
Begin by creating a simple scene in 3ds max. This scene can be found in
simplecar.max.

Figure 1 A simple physical scene

• Create a chamfered box.

• Rename the box to something that we can easily identify later – in
this example it’s called chassis00

• Add a plane to the scene to act as a floor.

• Add a Rigid Body Collection (RBCollection) to the scene. This can be
found in the helpers rollout under Havok Dynamics.

• Add the chamfered box and the plane to the Rigid Collection

• Select the chamfered box and open the Havok Dynamics Utility
Rollout.

• Change the box properties and give it some mass – in this case we
use 250kgs

• Select the plane and assign the ‘Concave – Use Mesh’ property.

 © 2000 Havok.com Inc. 4

• Preview the physical scene to ensure it
works. Click on Preview in window in the
Havok Dynamics Utility Rollout. Use the
right mouse button to pick up the box and
throw it about.

• Before constructing the scene in Director,
export both the physical and graphical
representations of the scene.

• To export the physical representation, go
to the Animation and Export rollout in the
Havok Dynamics Utility. Click on export to
file. You don’t need to export display
information (the checkbox should be
unchecked) and it is more efficient to
export the file in binary format.

• To export the 3D graphical representation,
choose Export from the file menu and save
the Shockwave 3D file.

The Havok Dynamics Utility Rollout

 © 2000 Havok.com Inc. 5

3 Adding Havok Dynamics in Director
The next step is to put all the pieces together in Director

• Launch Director.

• Import the Shockwave 3D file as a cast member and drag it onto the
stage.

• Import the Havok HKE file as a cast member.

• Next we need to link the physical and graphical representations of
the scene. To do this we add The Havok Physics behavior to the 3D
sprite

• Open the library palette and choose Havok > Setup from the list.
Drag and Drop the Physics behavior onto the 3D sprite on stage. The
following dialog will appear:

• The “Physics” behavior links a simulation to the 3D sprite. The Havok
member to be used can be selected from the dropdown list. The time
step specifies how far forward the physical world is advanced on each
animation frame. This demo should run at 60fps so a time step of
1/60 (0.016667) is used. The substeps parameter indicates how
many internal steps Havok will split the time step into. This can be
used to balance the CPU load between physics and display.

• Set the tempo of the animation to 60fps

• Now the physical world is linked to display. When you play, the
animation physical simulation is performed. You won’t see much at
this stage because the box is resting on the plane.

• As we will be driving our box around we will want to have the camera
follow it. Open the External cast that comes with this tutorial
(demo.cst) and drag and drop the Track Model behavior onto the 3D
sprite. To keep the camera stationary set the “Num Steps to Source
Position” to zero.

 © 2000 Havok.com Inc. 6

• Finally, drag and drop the Drive Model behavior onto the 3D Sprite
and the following dialog will appear.

• All the default parameters should be correct for the current scene. A
full description of each parameter is included in the Lingo behavior.

• Click OK and play the animation.

• Use the arrow keys to drive forward, reverse and turn. Press space to
use the handbrake!

• Now is a good time to tweak the values for the behavior and get a feel
for the kind of effects the model can produce. You can find a pre-built
version of this demo in simplecar.dir.

 © 2000 Havok.com Inc. 7

4 Smoke and Mirrors
Now that you have a simple block driving around a plane it’s time to add
a few more effects to the demo. Create a new max scene and add a few
more objects to it. Don’t forget to include a representation for the
chassis. There’s one pre-built in car.max.

Figure 2 A more complex physical scene

• The scene contains our original chamfered box, a few traffic cones, a
ramp and some curved walls.

• You can also see a car embedded in the middle of the chamfered box!
This car is displayed instead of the box, giving the illusion that a car
is being driven, when in fact only a box is being simulated. The
actual car model could have been used from the start, but often you
will want to use a simpler or more controllable physical
representation for a graphical object.

• If you click on the chamfered box and go to the Properties rollout in
the Havok Dynamics Utility you will see that the box uses a display
proxy.

• When you click on preview in window it appears as if the actual car is
being simulated. In fact the original box is simulated and you can

 © 2000 Havok.com Inc. 8

choose to display “Sim Edges” (the edges of the simulated objects)
from the geometry window to see what’s going on.

• As before you need to save two versions of the scene. One physical
and one graphical.

• Export the Havok HKE file as before using the Animation and Export
rollout. Again there is no need to export display information and
choose binary format.

• At present the Havok Xtra does not use any HKE display information.
The simple Physics behavior, that links a physical and graphical
scene, can’t be told that a more complex car model should be
displayed instead of the box. There is a simple way around this.

• Just before you export the Shockwave 3D file, delete the chamfered
box and rename the body of the car to chassis00. The Havok
Physics Behavior current binds physical information to display
information according to the names associated with each. By
renaming the car body it will now be associated with the chamfered
box. See the proxy.dir demo for more a example of this process.

• Once exported launch Director and add in the dynamics as before.

• You can attach the Track Model behavior (included in demo.cst) to
the chassis and the camera will automatically follow the car.

 © 2000 Havok.com Inc. 9

5 The Drive Model Behavior
All the real work for this demo is done inside the Drive Model behavior. This
section strips it down and shows exactly how it was constructed. The script
attempts to reproduce a few of the most commonly experienced vehicle
dynamics effects.

• A car should be able to accelerate / decelerate and turn.

• A car has a top speed and a maximum turning circle.

• Cars should be able to brake and when they brake they skid, at least
in most games!

• A car can move more easily backward and forward then left and right
i.e. it should only skid or slide sideways in extreme circumstances.

• All cars experience drag.

We treat each of these effects individually and let the Havok physics
engine take care of combining them all into a realistic driving behavior.

The on enterFrame handler controls the behavior at a high level.

on enterFrame(me)

 -- Check the keys and set the state variables
 me.getKeys()

 -- Apply the controller to drive the vehicle
 me.driveController()

end enterFrame

It calls two simple tasks.

1. It polls the keyboard to see which keys are held down. This sets
some script properties which are used later to determine if the
player is accelerating / braking etc.

2. It applies the heuristics above to the physical car model to make
it drive – in fact this is where all the work is. The rest of the script
is just the standard Lingo.

 © 2000 Havok.com Inc. 10

The driveController handler begins by working out some simple
geometric information. It needs to work out the direction the car is
currently heading and the axis it rotates about when it turns. This
information is originally stored when the car is created (it’s in local
space) and must be transformed to world space.

 -- Transform forward and axis vectors into world space
 trans = pMember.model(pModel).transform.duplicate()
 trans.position = Vector(0,0,0)
 trans.scale = Vector(1,1,1)

 currentFwd = trans * pForward
 currentAxis = trans * pTurnAxis
 currentRight = currentFwd.cross(currentAxis)

The current transform of the model being driven is duplicated and
the position and scaling information reset. Now the transform only
represents a rotation from local space to world space and is used to
work out the direction the car is currently heading, the axis it should
rotate about and, for convenience, the left/right orientation of the
car.

The Havok Xtra is queried to return some physical information about
the vehicle.

 rb = pHavok.rigidBody(pModel)

 -- Current Velocity
 currentVel = rb.linearVelocity

 -- Magnitude of velocity in the forward direction
 currentSpeed = currentVel.dot(currentFwd)

 if pMaxSpeed > 0 then
 -- Forward velocity as a proportion of max speed
 propSpeed = min(abs(currentSpeed) / pMaxSpeed , 1)
 else
 propSpeed = 1
 end if

 -- Ask Havok for the angular velocity
 angularVel = rb.angularVelocity
 -- Ask Havok for the mass
 mass = rb.mass

The vehicle’s current velocity, its speed in the forward direction, its
angular velocity and its mass are all stored. In addition the speed in
the forward direction as a proportion of the maximum speed is
calculated here and used later.

Now that all the initial configuration information has been obtained
the effects can be added

 -- If going forward we want to reach our Max Speed
 if (pGoingForward) then
 diff = pMaxSpeed - currentSpeed
 -- Apply an impulse proportional to the difference
 -- between our desired speed and our actual speed
 imp = (diff * pAccGain * mass) * currentFwd
 rb.ApplyImpulse(imp)
 end if

 © 2000 Havok.com Inc. 11

The player wants to accelerate. The pGoingForward property was set
if the up arrow key is held down. To make the car accelerate you can
apply a force or an impulse in the current forward direction. Impulses
are used instead of forces here because they instantaneously change
the velocity of the car and give you more direct control.

When accelerating, the player wants to reach maximum speed. The
difference between the current speed and the maximum speed is
evaluated and an impulse in the forward direction is applied which is
proportional to this difference. The constant pAccGain determines
how quickly the user can reach top speed. The impulse is multiplied
by the mass so the behavior is independent of the mass of the
vehicle. This makes it easier to choose sensible values for pAccGain:
0 means no acceleration and 1 means reach maximum speed
instantaneously. Any value in between gives a gradual acceleration.

Exactly the same calculation is done for reversing, except the
direction of the impulse is reversed.

 -- If braking we reach 0
 if (pBraking) then
 imp = (-currentSpeed * pBrakeGain * mass) * currentFwd
 imp.z = 0
 rb.ApplyImpulse(imp)
 end if

When braking, a similar calculation causes the vehicle to come to a
complete stop.

When turning, the turning circle for the vehicle is automatically
adjusted. The car can turn in a tighter circle at lower speed.

 -- Check if we can turn.
 -- We check if the magnitude of our angular velocity is less than
 -- our max turn speed.
 -- Max Turning speed depends on velocity
 mTS = min(abs(currentSpeed), (1.0 - propSpeed) * pMaxTurnSpeed)
 canTurn = (abs(angularVel.dot(currentAxis)) < mTS)

The maximum turning circle (or turning speed) is inversely
proportional to our current speed. The vehicle will turn sharper at
lower speeds. In addition the calculation ensures the vehicle can
never turn faster than it is traveling forward i.e. there’s no over-steer.
Next, our current angular velocity, i.e. how fast the car is moving, is
compared against this newly computed turning speed and it sets a
variable which indicates if the vehicle is allowed to turn.

 -- If we can turn and we’re turning left
 if (canTurn and pGoingLeft) then
 -- Apply an angular impulse to turn us left
 imp = currentAxis * (pTurnGain * mass)
 rb.ApplyAngularImpulse(imp)
 end if

If the vehicle can turn, an angular impulse is applied to cause the
vehicle to spin. Angular impulses affect angular velocity, normal
impulses change linear velocity.

 © 2000 Havok.com Inc. 12

The vehicle should not move or slide laterally as easily as it moves
forward or backward. Impulses are applied to compensate for this
sliding – this kind of ‘fake friction’ emerges automatically from the
physics engine if a fully physical car model with real wheels and
proper suspension had been used instead.

 -- Work out how fast we’re sliding left/right
 -- An compensate according to the grip property
 -- We just allow the car to slide if its braking
 slideSpeed = currentRight.dot(currentVel)
 if not (pBraking) then
 imp = currentRight * (-slideSpeed * mass * pGrip)
 -- Apply an impulse to compensate for sliding
 rb.ApplyImpulse(imp)
 end if

The lateral speed of the vehicle is evaluated and an impulse
proportional to this is applied. The impulse is applied in a direction
opposite to the direction the vehicle is sliding, to compensate for the
loss of traction. This compensation is deliberately not performed
when braking to allow the car to skid and slide when the handbrake
is on.

The same kind of compensation is performed to stop the car spinning
if the user stops turning – this mimics auto centering the wheels
when the steering is released.

 -- Apply an angular impulse to compensate for spinning
 if (canTurn=false) or ((pGoingLeft=false) and (pGoingRight=false)) then
 imp = currentAxis * angularVel.dot(currentAxis) * (-pTurnGain * mass)
 rb.ApplyAngularImpulse(imp)
 end if

Finally the last effect, aerodynamic drag, is added.

 -- Apply Drag proportional to speed
 imp = -currentVel * (pDrag * mass)
 rb.ApplyImpulse(imp)

Drag is implemented just like a braking force except it works in all
directions, not just forward / back. It is proportional to the current
speed and is always applied to the vehicle.

This behavior is run on every frame of the animation and creates a
tightly coupled feedback loop that works in harmony with the physics
of the scene. The gain parameters let you decide exactly how much
control you want over the vehicle’s behavior.

 © 2000 Havok.com Inc. 13

6 Things to Try
At the moment the driving behavior is applied regardless of the
current state of the vehicle – it may be upside down, on its roof, or in
mid air after jumping off the ramp. A quick check just before any of
the real work is done helps.

 -- Transform forward and axis vectors into world space
 trans = pMember.model(pModel).transform.duplicate()
 if (trans.position.z > 20) then
 return
 end if
 trans.position = Vector(0,0,0)
 :
 :

The chassis in the example usually rides along a flat plane at a
height of 16.5 units. We extend this to give the driving some tolerance
but this is still quite naïve: the car can drive upside down! See if you
can come up with a better heuristic. How would the car be handled if
it is driving over a varied terrain?

